3,892 research outputs found

    Electrode construction Patent

    Get PDF
    Electrode attached to helmets for detecting low level signals from skin of living creature

    Helmet system broadcasts electroencephalograms of wearer

    Get PDF
    EEG monitoring system consisting of nonirritating sponge-type electrodes, amplifiers, and a battery-powered wireless transmitter, all mounted in the subjects helmet, obtains electroencephalograms /EEGs/ of pilots and astronauts performing tasks under stress. After a quick initial fitting, the helmet can be removed and replaced without adjustments

    Constant-amplitude RC oscillator

    Get PDF
    Sinusoidal oscillator has a frequency determined by resistance-capacitance /RC/ values of two charge control devices and a constant-amplitude voltage independent of frequency and RC values. RC elements provide either voltage-control, resistance-control, or capacitance-control of the frequency

    Theory and observations of ice particle evolution in cirrus using Doppler radar: evidence for aggregation

    Get PDF
    Vertically pointing Doppler radar has been used to study the evolution of ice particles as they sediment through a cirrus cloud. The measured Doppler fall speeds, together with radar-derived estimates for the altitude of cloud top, are used to estimate a characteristic fall time tc for the `average' ice particle. The change in radar reflectivity Z is studied as a function of tc, and is found to increase exponentially with fall time. We use the idea of dynamically scaling particle size distributions to show that this behaviour implies exponential growth of the average particle size, and argue that this exponential growth is a signature of ice crystal aggregation.Comment: accepted to Geophysical Research Letter

    Estimating drizzle drop size and precipitation rate using two-colour lidar measurements

    Get PDF
    A method to estimate the size and liquid water content of drizzle drops using lidar measurements at two wavelengths is described. The method exploits the differential absorption of infrared light by liquid water at 905 nm and 1.5 μm, which leads to a different backscatter cross section for water drops larger than ≈50 μm. The ratio of backscatter measured from drizzle samples below cloud base at these two wavelengths (the colour ratio) provides a measure of the median volume drop diameter D0. This is a strong effect: for D0=200 μm, a colour ratio of ≈6 dB is predicted. Once D0 is known, the measured backscatter at 905 nm can be used to calculate the liquid water content (LWC) and other moments of the drizzle drop distribution. The method is applied to observations of drizzle falling from stratocumulus and stratus clouds. High resolution (32 s, 36 m) profiles of D0, LWC and precipitation rate R are derived. The main sources of error in the technique are the need to assume a value for the dispersion parameter μ in the drop size spectrum (leading to at most a 35% error in R) and the influence of aerosol returns on the retrieval (≈10% error in R for the cases considered here). Radar reflectivities are also computed from the lidar data, and compared to independent measurements from a colocated cloud radar, offering independent validation of the derived drop size distributions

    How and Why We Should Know Less: Information Privacy in Cyberspace

    Get PDF
    Article published in the Michigan State University School of Law Student Scholarship Collection

    Experimental evidence for the breakdown of a Hartree-Fock approach in a weakly interacting Bose gas

    Get PDF
    We study the formation of a quasi-condensate in a nearly one dimensional, weakly interacting trapped atomic Bose gas. We show that a Hartree Fock (mean-field) approach fails to explain the presence of the quasi-condensate in the center of the cloud: the quasi-condensate appears through an interaction-driven cross-over and not a saturation of the excited states. Numerical calculations based on Bogoliubov theory give an estimate of the cross-over density in agreement with experimental results.Comment: submitted to Phys. Rev. Letter

    Bose-Einstein Condensation and Spin Mixtures of Optically Trapped Metastable Helium

    Full text link
    We report the realization of a BEC of metastable helium-4 atoms (4He*) in an all optical potential. Up to 10^5 spin polarized 4He* atoms are condensed in an optical dipole trap formed from a single, focused, vertically propagating far off-resonance laser beam. The vertical trap geometry is chosen to best match the resolution characteristics of a delay-line anode micro-channel plate detector capable of registering single He* atoms. We also confirm the instability of certain spin state combinations of 4He* to two-body inelastic processes, which necessarily affects the scope of future experiments using optically trapped spin mixtures. In order to better quantify this constraint, we measure spin state resolved two-body inelastic loss rate coefficients in the optical trap

    Fractal geometry of aggregate snowflakes revealed by triple wavelength radar measurements

    Get PDF
    Radar reflectivity measurements from three different wavelengths are used to retrieve information about the shape of aggregate snowflakes in deep stratiform ice clouds. Dual-wavelength ratios are calculated for different shape models and compared to observations at 3, 35 and 94 GHz. It is demonstrated that many scattering models, including spherical and spheroidal models, do not adequately describe the aggregate snowflakes that are observed. The observations are consistent with fractal aggregate geometries generated by a physically-based aggregation model. It is demonstrated that the fractal dimension of large aggregates can be inferred directly from the radar data. Fractal dimensions close to 2 are retrieved, consistent with previous theoretical models and in-situ observations
    corecore